47. The Intervalency Angles of Oxygen and Sulphur in Dioxan, Dithian, Trioxymethylene, and Trithioformaldehyde.

By K. E. Calderbank and R. J. W. Le Fèvre.

The dipole moments of trioxymethylene and trithioformaldehyde, determined in benzene solution, suggest that in molecules of type (II) the valency angles of sulphur and oxygen are approximately equal. This is in contrast to earlier conclusions drawn from measurements on molecules of type (I). Dioxan and dithian (type III) both have very small or zero moments.
Bennett, Earp, and Glasstone (J., 1934, 1179) showed the dipole moment of diphenylene dioxide ($\mathrm{I}, \mathrm{X}=\mathrm{O}$) to be experimentally indistinguishable from zero, in contrast with that of thianthren ($\mathrm{I}, \mathrm{X}=\mathrm{S}$) for which values of $1 \cdot 7 \mathrm{D}$. (Bergmann and Tschudnowsky, Ber., 1932, 65,

(I.)

(II.)

(III.)
458), 1.41 d. (Smyth and Walls, J. Chem. Physics, 1933, 1, 337), 1.54 d. (Bennett and Glasstone, J., 1934, 128), and 1.57 D. (Campbell, Le Fèvre, Le Fèvre, and Turner, $J ., 1938$, 404) have been recorded. The last two groups of authors concluded, therefore, that the intervalency angles of X in the structure (I) are ca. 120° for oxygen, and less than this, perhaps 110°, for sulphur. In view of the fairly high polarity of paraldehyde (2.03 D., Le Fèvre and Russell, J., 1936, 496) and the low polarity of dioxan (for references, see below), it seemed of interest to make analogous comparisons for the oxygen and sulphur compounds corresponding to (II) and (III).

Measurements of trioxymethylene, dithian, and trithioformaldehyde are therefore now reported ($\mu=2 \cdot 1_{6}, c a .0,2 \cdot 3_{8} \mathrm{D}$. respectively). Those on trioxymethylene were completed in 1939 at University College, London. During the war, Maryott and Acree (J. Res. Nat. Bur. Stand., 1944, 33, 71) also examined this molecule, finding $\mu=2.18$ D., with which our value is in excellent agreement.

Theoretically the structures represented by (II) may adopt strainless configurations of the Sachse type (Ber., 1890, 23, 1363), in which the three X atoms are either all above the plane containing the centres of the three carbon atoms ("chair " forms), or two above this plane and one below it (" boat" forms). In fact, however, such isomeric pairs do not seem to be isolable. An allegedly second form of trithioformaldehyde of m. p. 247° (Hinsberg, Ber., 1923, 56, 1850; 1924, 57, 836; $J ., p r$. Chem., 1933, ii, 138, 214) has been shown by Bell and Bennett ($J ., 1929,15$) to disagree analytically with the formula $\left(\mathrm{CH}_{2} \mathrm{~S}\right)_{3}$ although on recrystallisation the ordinary form, m. p. 216°, can be obtained from it. The single known substances therefore may each be either (a) wholly " boat " or " chair " individuals, or (b) equilibrium mixtures of the two configurations (resembling the equilibria commonly supposed for simple cyclohexane rings).

Geometrical isomers of paraldehyde are likewise unknown, but electron diffraction studies on its vapour (Ackerman and Mayer, J. Chem. Physics., 1936, 4, 377; Carpenter and Brockway, J. Amer. Chem. Soc., 1936, 58, 1270) are compatible with a puckered ring of carbon and oxygen atoms, i.e., a "chair" model. Trimethylene trioxide and trisulphide (II), whose crystal structures are found by X-ray investigation to be alike (Moerman, Rec. Trav. chim., 1937, 56,

161; Moerman and Wiebenga, Z. Krist., 1937, 97, 323), resemble gaseous paraldehyde in being also " chair " forms. Accordingly it seems a priori probable that these compounds will dissolve in benzene with retention of this molecular configuration.

Our results may be analysed as follows :
If μ_{x} is the appropriate $\mathrm{C}-\mathrm{X}-\mathrm{C}$ moment, the expected moments for the " boat " and " chair " varieties of (II) are calculable as $\mu_{x} \sin \theta$ and $3 \mu_{x} \sin \theta$ respectively, where θ is the angle between the plane of the $\mathrm{C}-\mathrm{X}-\mathrm{C}$ bonds and that through the three methylene carbon atoms. The angle θ is readily given by

$$
\cos \theta=\frac{(2 \sin \beta / 2-\sin \alpha / 2)}{3^{1 / 2} \cos \alpha / 2}
$$

α being the valency angle of the atom X and β that of carbon.
A selection of our calculations, relating to α and β values around 110°, and utilising for μ_{x} the moments recorded for dimethyl ether and dimethyl sulphide (Trans. Faraday Soc., 1934, 30, Appendix), namely $1 \cdot 3$ and $1 \cdot 4 \mathrm{D}$., is given in Table I.

Table I.
Estimated moments for $\left(\mathrm{CH}_{\mathbf{2}} \mathrm{X}\right)_{3}$ (chair form).

Intervalency angle of X	95°	100°	105°	110°	115°	120°	125°
Intervalency angle of carbon $=105^{\circ}$.							
θ	$43^{\circ} 27^{\prime}$	$42^{\circ} 31^{\prime}$	$41^{\circ} 12^{\prime}$	$39^{\circ} 24^{\prime}$	$37^{\circ} 0^{\prime}$	$33^{\circ} 44^{\prime}$	$28^{\circ} 58^{\prime}$
$\mathrm{X}=0$	$2 \cdot 7$	$2 \cdot 6$	$2 \cdot 6$	$2 \cdot 5$	$2 \cdot 3$	$\cdots \cdot 1$	1.9
$\mathrm{X}=\mathrm{S}$	$2 \cdot 9$	$2 \cdot 8$	$2 \cdot 8$	$2 \cdot 7$	$2 \cdot 5$	$2 \cdot 3$	$2 \cdot 0$
Intervalency angle of carbon $=110^{\circ}$.							
θ	$39^{\circ} 39^{\prime}$	$38^{\circ} 37^{\prime}$	$36^{\circ} 43^{\prime}$	$34^{\circ} 28^{\prime}$	$31^{\circ} 21^{\prime}$	$26^{\circ} 55^{\prime}$	$20^{\circ} 2^{\prime}$
$\mathrm{X}=\mathrm{O}$	$2 \cdot 5$	$2 \cdot 4$	$2 \cdot 3$	$2 \cdot 2$	$2 \cdot 0$	1.8	$1 \cdot 3$
$\mathrm{X}=\mathrm{S}$	$2 \cdot 7$	$2 \cdot 6$	2.5	$2 \cdot 4$	$2 \cdot 2$	1.9	$1 \cdot 4$
Intervalency angle of carbon $=115^{\circ}$							
θ....................................	$35^{\circ} 46^{\prime}$	$34^{\circ} 12^{\prime}$	$32^{\circ} 5^{\prime}$	$29^{\circ} 9^{\prime}$	$25^{\circ} 0^{\prime}$	$18^{\circ} 36^{\prime}$	0°
$\mathrm{X}=\mathrm{O}$	23	$2 \cdot 2$	$2 \cdot 0$	1.9	1.7	$1 \cdot 2$	0
$\mathrm{X}=\mathrm{S} \quad \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots .$.	$2 \cdot 5$	$2 \cdot 4$	$2 \cdot 2$	$2 \cdot 0$	$1 \cdot 8$	$1 \cdot 3$	0

The moments of the " boat" forms are of course $\frac{1}{3}$ of the figures shown above. Comparison of the results now obtained $(2 \cdot 2,2 \cdot 4 \mathrm{D}$.) with the calculated values suggests that both compounds exist in a " chair" configuration, or as a mobile equilibrium in which this form considerably predominates. If the compounds are single rigid individuals then our present experiments provide immediate estimates of the valency angles, thus :

If the carbon angle $=105^{\circ}$, the oxygen and sulphur angles cannot be less than $c a .117^{\circ}$.
If the carbon angle $=110^{\circ}$, the oxygen and sulphur angles cannot be less than 110°.
If the carbon angle $=115^{\circ}$, the oxygen and sulphur angles cannot be less than 100°.
It is easily seen from Table I that if, instead of $\mu_{\mathrm{Me}_{2} \mathrm{X}}$, larger values (e.g., the moments reported for tetrahydrofuran and tetrahydrothiophen, Robles, Rec. Trav. chim., 1939, 68, 111) are adopted, these minimum angles would be enlarged. However, X-ray investigations on crystalline trioxymethylene and trithioformaldehyde (Moerman; Moerman and Wiebenga, locc. cit.) are in agreement with intervalency angles for oxygen and sulphur which are tetrahedral within rather wide limits of error. It is noteworthy that an assumption of 110° throughout for C, O, and S gives good accord with our measurements.

The valency angles of these elements in other compounds have been given values by various workers extending over a range of some 70°. (For references see below; Bennett and Glasstone, loc. cit.; Bennett, Earp, and Glasstone, loc. cit.) Perhaps aromatic and aliphatic compounds should be considered separately. Hampson and Sutton (Trans. Faraday Soc., 1935, 31, 945), having concluded that the O and S angles in diphenyl ether and sulphide respectively are $128^{\circ} \pm 4^{\circ}$
and $113^{\circ} \pm 3^{\circ}$, point out that mesomeric shifts (such as Ph effect of increasing the central valency angle from the tetrahedral value up to as much as $\mathbf{1 4 5} 5^{\circ}$, and-provided oxygen forms a double bond with an Ar-nucleus more readily than does sulphur -the planarity of diphenylene dioxide and the non-planarity of thianthren should be under-
standable. Yet, despite the fact that $\mu_{\mathrm{C}-\mathrm{S}}$ seems generally to be greater than $\mu_{\mathrm{C}-0}$ (Hunter and Partington, J., 1933, 87) the moments of $4: 4^{\prime}$-dibromodiphenyl ether and sulphide are less than 0.2 d. from identical (Hampson, Farmer, and Sutton, Proc. Roy. Soc., 1933, 143, 147)-a difference of the order reported for aliphatic pairs (Hunter and Partington, J., 1931, 2062; 1932, 2819) or for tetrahydrofuran and tetrahydrothiophen (Robles, loc. cit.). It therefore seems impracticable to take the view that either oxygen or sulphur has a " natural" intervalency angle. The possibility that the conclusions based on the dipole moments of the two structures of type (I) are not general was mentioned by Bennett and Glasstone (loc. cit.). The present measurements illustrate this, since by analogy with thianthren and diphenylene dioxide a much higher moment for trithioformaldehyde than for trioxymethylene should be expected; instead, the observed moments are not far from equal.

Again, with the recorded facts of the comparison (II) in mind, and applying arguments similar to those used for (? the flexible) 1:4-cyclohexadione (Le Fèvre and Le Fèvre, J., 1935, 1696), we expected the moment of $1: 4$-dithian to be greater than that of $1: 4$-dioxan. Instead we find no notable difference, dithian being non-polar within the limits of our experimental accuracy, while dioxan may have a small moment (as a liquid) of the order 0.4 D . Either, therefore, these two molecules (a) are not in mobile boat and chair equilibria at ordinary temperatures, but are flat, or (b) exist as rigid chair (trans) structures. The latter explanation requires a S angle of less than 120°, and/or a higher degree of resistance to valency deflection by S than by O. In all instances where related oxygen and sulphur compounds have been studied by the same method, the S angle has been reported as the smaller (Glasstone, Ann. Reports, 1935, 133; 1936, 84; Sutherland, ibid., 1938, 51; Balfe and Kenyon, ibid., 1942, 116); this is true even in the cases of furan and thiophen ($\angle C O C=107^{\circ}, \angle C S C=91^{\circ}$; Pauling and Schomaker, J. Amer. Chem. Soc., 1939, 61, 1769).

Experimental.

Materials.-The three solutes were prepared by the methods noted by Beilstein (" Handbuch ", XIX, 3, 382 ; XIX* 609,804). The melting points conformed to the literature values.

Measurements.-These were made in the manner and on the apparatus described previously (J., 1948, 1949). The symbols are those customarily used by us (cf. J., 1937, 1805).

Table II.

$100 w_{1}^{\prime}$.	$\epsilon^{25^{\circ}}$.	$d_{4}^{25^{\circ}}$.	$a \epsilon_{2}$.	βd_{2}.		Dith	an in ben		
0	$2 \cdot 2725$	0.87378	-	-	$100 w_{1}$.	$\epsilon^{30^{\circ}}$.	$d_{4}^{30^{\circ}}$.	$a \epsilon_{2}$.	βd_{2}.
	Trioxymethylene in benzene.				${ }_{0}^{0} 0.3252$	2.2626	0.86844 0.86930	-	$0 \cdot 264$
$0 \cdot 4106$	$2 \cdot 2950$	0.87475	$5 \cdot 48$	$0 \cdot 236$	$0 \cdot 5074$	$2 \cdot 2640$	$0 \cdot 86951$	$0 \cdot 276$	0.211
0.4975	$2 \cdot 2992$	$0 \cdot 87500$	$5 \cdot 37$	0.245	$0 \cdot 8502$	-	$0 \cdot 87044$		0.235
$0 \cdot 7751$	$2 \cdot 3151$	0.87569	$5 \cdot 50$	0.246	1.2025	$2 \cdot 2652$	$0 \cdot 87124$	0.216	0.233
0.9901	$2 \cdot 3285$	0.87621	$5 \cdot 66$	0.245	1.5560	$2 \cdot 2655$	0.87230	$0 \cdot 186$	$0 \cdot 235$
					$2 \cdot 7358$	$2 \cdot 2685$	$0 \cdot 87524$	$0 \cdot 216$	$0 \cdot 249$

Trithioformaldehyde in benzene.

$100 w_{1}$.	$\epsilon^{25^{\circ}}$.	$d_{4}^{25}{ }^{\circ}$.	$\alpha \epsilon_{2}$.	βd_{2}.	$100 w_{1}$.	$\epsilon^{23^{*}}$.	$d_{45^{\circ}}^{25^{\circ}}$.	$a \epsilon_{2}$.	βd_{2}.
$0 \cdot 0851$	$2 \cdot 2762$	0.87414	$4 \cdot 35$	$0 \cdot 423$	0.2308	$2 \cdot 2808$	$0 \cdot 87474$	$3 \cdot 60$	$0 \cdot 416$
$0 \cdot 1369$	$2 \cdot 2775$	0.87440	$3 \cdot 87$	$0 \cdot 453$	0.2433	$2 \cdot 2811$	$0 \cdot 87478$	$3 \cdot 53$	$0 \cdot 411$
$0 \cdot 1633$		$0 \cdot 87448$	-	$0 \cdot 429$	$0 \cdot 3087$	$2 \cdot 2822$	$0 \cdot 87514$	3•14	0.441
$0 \cdot 2008$	$2 \cdot 2797$	$0 \cdot 87464$	$3 \cdot 59$	0.428					

The extrapolated values of ${ }_{\mathrm{T}} P_{1}$ at infinite dilution have been calculated from the above data by the equation $\mathbf{T} P \infty=M_{1}\left[p_{2}(1-\beta)+c a \epsilon_{2}\right]$ (cf. $J ., 1937,1805$). Temperatures of 30° were unfortunately necessitated by climatic conditions when the measurements on dithian were made. Appropriate values of p_{2} and c are, for $25^{\circ}, 0.3408$ c.c. and 0.1881 c.c., and for $30^{\circ}, 0.3411$ c.c. and 0.1901 c.c. respectively. Since the drift in $\alpha \epsilon_{2}$ for trithioformaldehyde plotted fairly smoothly against ω_{1}, the value for $\omega_{1}=0$ was therefore used in the following Table. In the other two cases, and with β throughout, the figures are averages.

Compound.	$a \epsilon_{2}$.	β.	∞P_{1} (c.c.).	[$\left.R_{L}\right]_{\mathrm{D}}$ (c.c.).	μ, D.
Trioxymethylene	$5 \cdot 50$	$0 \cdot 278$	$115 \cdot 3$	19.3*	$2 \cdot 1{ }_{6}$
Trithioformaldehyde	$4 \cdot 50$	$0 \cdot 491$	$155 \cdot 0$	$37.8 \dagger$	$2 \cdot 3{ }_{3}$
Dithian	$0 \cdot 22_{4}$	$0 \cdot 274$	$34 \cdot 8$	$34 \cdot 4 \dagger$	ca. 0

$$
{ }^{*} \text { Calculated as }[R]_{\text {paraldehyde }}-[R]_{\mathrm{C}_{3} \mathrm{H}_{6}} .
$$

\dagger Calculated from atomic refractivities.

Maryott and Acree (loc. cit.) found ∞P_{1} for trioxymethylene in benzene at 25° to be 114.4 c.c.; this figure together with $18.8 \mathrm{c} . \mathrm{c}$. for the distortion polarisation gives 2.18 D . for the moment.

Dipole Moment of Dioxan.-Greene and Schwingel (J. Amer. Chem. Soc., 1934, 56, 653) have shown that as a gas between 337° and $487^{\circ} \mathrm{K}$. dioxan is non-polar. Recorded data for the liquid display variations-possibly due to the difficulties of obtaining an anhydrous pure specimen. Table IV lists the figures given by workers who have used dioxan as a solvent in dielectric-constant work.

Table IV.

Ref.	$\epsilon^{25^{\circ}}$.	$d_{4}^{25^{*}}{ }^{\circ}$.	$n_{\mathrm{D}}^{25^{\circ}}$.	$\left(P_{1}\right)_{25}$, c.c.	$\left[R_{L}\right]_{\text {p }}$ c.c.
1	$2 \cdot 306$	1.0311	1.42032	25.90	21.63
2	$2 \cdot 233$	-	-	-	-
3	$2 \cdot 3060$	1.02798	-	25.96	-
4	$2 \cdot 3051$	1.0268	1.42025	26.00	21.71
5	$2 \cdot 2106$	1.0277	-	24.64	-
6	$2 \cdot 2093$	1.02920	-	24.58	-
7	$2 \cdot 2159$	$1 \cdot 02750$	-	24.72	-
8	$2 \cdot 2198$	-	-	-	-
9	$\left\{\begin{array}{l}2.2178 \\ 20075\end{array}\right.$	1.02785	1.41990	$25 \cdot 62\}$	21.68
9	$\{2.2075$	1.02785	1.41990	24.59	21.68
10	[2.218	1.0281	-	$24 \cdot 73$	-
	$\{2.213$	1.0278	-	$24 \cdot 67\}$	-
	2-210	$1 \cdot 0277$	-	$24 \cdot 63$	-
	$\epsilon^{20^{*}}$,	$d_{4}^{20^{\circ}}$.		$\left(P_{1}\right)_{20 \text {-. }}$	21.7*
11	$\left\{\begin{array}{l}2.316\end{array}\right.$	1.0330	-	$26.00\}$	
12	2.320 2.237	1.0340 1.0325	二	26.01 24.90	
	$\left\{\begin{array}{l}2 \cdot 237 \\ 2 \cdot 243 \\ 2 \cdot 24\end{array}\right.$	1.0325 1.0324	二	$\left.\begin{array}{l}24.90 \\ 24.99\end{array}\right\}$	
	2.244	1.0326	-	25.00	

* From unquoted experimental observations in reference 11.
${ }^{1}$ Smyth and Walls (J. Amer. Chem. Soc., 1931, 53, 2117; 1932, 54, 3230).
${ }^{2}$ Ulich and Nespital (Z. physikal. Chem., 1932, B, 16, 229).
${ }^{3}$ Le Fèvre and Le Fèvre (J., 1935, 957).
${ }^{4}$ Frey and Gilbert (J. Amer. Chem. Soc., 1937, 59, 1344).
${ }^{5}$ Dostrovsky and Le Fèvre (J., 1939, 535).
6 Caldwell and Le Fèvre (ibid., p. 1621).
7 Bloom and Sutton (J., 1941, 727).
${ }^{8}$ Berg and Jensen (Annalen, 1941, 548, 116).
${ }^{9}$ Friediger and Jensen (Kgl. Danske Videnskab. Selskab, 1943, 20, Nr. 20).
${ }^{10}$ Curran and Chaput (J. Amer. Chem. Soc., 1947, 69, 1134).
${ }_{11}$ Hunter and Partington ($J ., 1935,87$).
12 Cowley and Partington (J., 1936, 47).
The total polarisations are seen to fall between 26.00 and 24.58 at 25° and 26.01 and 24.90 at 20°. Our own samples were stored over sodium in addition to having passed through the normal purification procedure (e.g., that of Cowley and Partington, loc. cit.). Taking $24 \cdot 6 \mathrm{c}$.c. as $\mathrm{T} P_{25}{ }^{\circ}$ and $\left[R_{L}\right]_{\mathrm{D}}=21 \cdot 7 \mathrm{c} . \mathrm{c}$., the apparent moment is 0.38 D . at 20°; Cowley and Partington's lowest ${ }_{T} P$, namely, $24.9 \mathrm{c} . \mathrm{c}$., corresponds to $\mu=0 \cdot 40 \mathrm{D}$. Greene and Schwingel (loc. cit.) give $24 \cdot 5 \mathrm{c} . \mathrm{c}$. as the mean polarisation over the temperature interval quoted above.

Note added May 24th, 1948.-When the above was written the paper by Hassel and Viervoll (Acta Chem. Scand., 1947, 1, 149) had not arrived in Australia. These authors report results of electrondiffraction studies on, inter alia, dioxan, dithian, and trithian. For all three, "staggered " or "chair" structures are indicated as the most probable. The angles recorded are : in dioxan, $\mathrm{C}-\mathrm{C}-\mathrm{O}=106^{\circ}$ and $\mathrm{C}-\mathrm{O}-\mathrm{C}=108^{\circ}$ (cf. Brockway and Sutton, J. Amer. Chem. Soc., 1935, 57, 473); in dithian, $\mathrm{C}-\mathrm{C}-\mathrm{S}=111^{\circ}$ and $\mathrm{C}-\mathrm{S}-\mathrm{C}=100^{\circ}$; in trithian, $\mathrm{S}-\mathrm{C}-\mathrm{S}=106.5^{\circ}$ and $\mathrm{C}-\mathrm{S}-\mathrm{C}=114 \cdot 5^{\circ}$. In general, therefore, our results are reconcilable with those of Hassel and Viervoll notwithstanding the differences of method and state.

The standard Sullivan variable air condenser was originally purchased from a grant by the Chemical Society's Research Grant Committee, and grateful acknowledgment is made.

University of Sydney, N.S.W., Australia.
[Received, March 30th, 1948.]

